

Florida Solar Energy Center • November 1-4, 2005

Power for Wireless H₂ Sensor Network

Toshikazu Nishida and Khai D. T. Ngo

Interdisciplinary Microsystems Group
Power Management Group
Department of Electrical and Computer Engineering
University of Florida

Start Date = 9/30/2004 Planned Completion = 8/2/2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- To develop a power source for a wireless hydrogen sensor network using a multi-source energy harvester that harvests vibrational energy for operation during 'dark' conditions and optical (solar) energy for operation during 'light' conditions.
- To design and fabricate a power processor that extracts energy from a photovoltaic and a vibration energy harvester and delivers the energy to a reservoir that supports a self-powered hydrogen sensor network.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- Current battery technologies have a limited shelflife ~ few years.
- Reclamation of solar radiation is limited to applications with direct exposure.
- Vibrational energy occurs in many structural and mechanical systems.
 - Ambulatory sources [Lakic 1988, Kymissis 1998, Amirtharajah 1998, Antaki 1995, Pelrine 2001].
 - Ground vibrations and vibrating equipment [Roundy 2004, Roundy 2003, Glynne-Jones 2001].
- Goal: Dual-source power harvester to harvest vibrational and solar energy.

Relevance to NASA

• Since a NASA objective is to achieve long (10 year) operating life with minimal maintenance, a wireless system implies both wireless data transmission as well as wireless power generation.

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

- Milestones
- 1st Quarter: Design photovoltaic power processor. Fabricate MEMS piezogenerator.
- 2nd Quarter: Fabricate and test photovoltaic power processor. Test piezogenerator.
- 3rd Quarter: Design, fabricate, and test vibration power processor. Package piezogenerator.
- 4th Quarter: Synthesize multi-input power processor; test photovoltaic and vibration power processors with photovoltaic and piezoelectric generators, sensors, and power transmitters.
- Products and Deliverables
- 1st Quarter: Quarterly report describing circuits and design optimization tools for photovoltaic power processors; schematics and operation waveforms.
- 2nd Quarter: Photovoltaic power processor prototype and test data; quarterly report
- 3rd Quarter: Vibration power processor prototype and test data; quarterly report.
- **4th Quarter**: Final report describing updates for previous quarterly reports; circuit synthesis and operation of multi-input power processors; results of integrated system tests; final review meeting.

	1 st Quarter	2 st Quarter	3 st Quarter	4 st Quarter
Expenditures-Nishida	\$17,500	\$17,500	\$17,500	\$17,500
Expenditures-Ngo	\$17,500	\$17,500	\$17,500	\$17,500

Florida Solar Energy Center • November 1-4, 2005

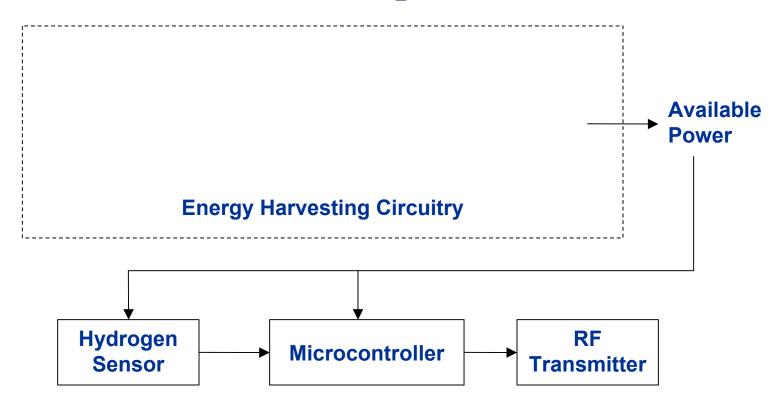
Anticipated Technology End Use

- Multi-energy source power harvester for wireless hydrogen sensor network
- Local ambient energy reclamation to power wireless sensors
 - Condition-based maintenance
 - Structural monitoring
 - Surveillance

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

- Power consumption for wireless sensor controller modeled.
- Solar cell power processor designed, fabricated, and tested.
- Vibration piezogenerator power processor designed, fabricated, and tested.
- Electromechanical model formulated for piezoelectric composite beam.
- Scaling theory for micro PZT generators developed and verified using FEM.
- MEMS piezogenerator test structures designed and process flow developed.
- Fabrication of MEMS piezogenerator test structures 70% completed.



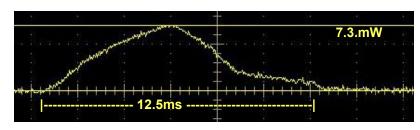
Florida Solar Energy Center • November 1-4, 2005

System Overview— Power for Wireless H₂ Sensor Network

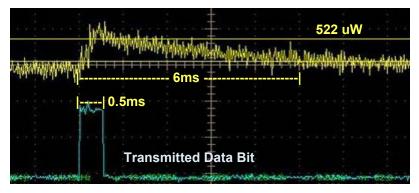
Florida Solar Energy Center • November 1-4, 2005

Power Budget

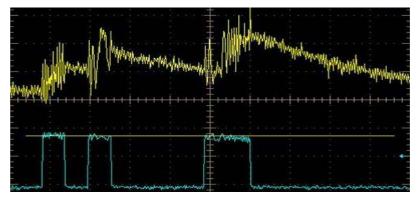
Microcontroller & Wireless


Event	Average Power	Length in Time
Initialization	3.07 mW	12.5ms
Sense Data	2.5 uW	0.3 ms per bit
Transmit 1	261 uW	0.5ms per bit
Transmit 0	2.5 uW	0.5ms per bit
Remain Idle	2.5 uW	Variable

- Includes Power for RF Transmission
- Power to transmit a data pattern depends on the data pattern. The long fall time is due to the oscillator not reaching steady state.


Sensor

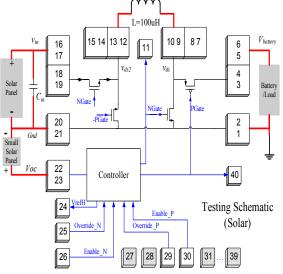
Hydrogen Level	Resistance	Average Power
0 ppm	1563 Ohms	84 uW

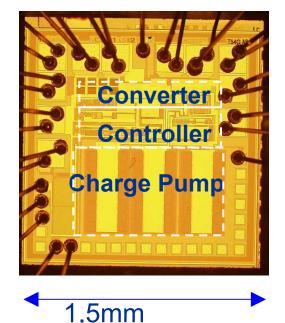

Includes Power for Biasing Circuit

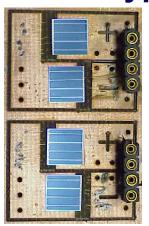
Initialization Power

Power to Send 1 bit

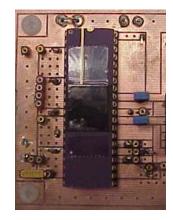
Power to Send Data Pattern






Florida Solar Energy Center • November 1-4, 2005

Power Processor IC (Solar): IC & test configuration

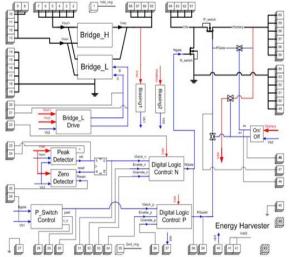


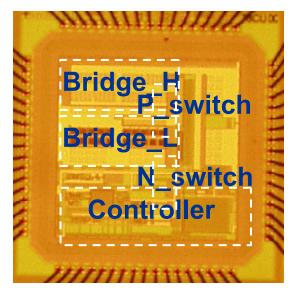
Prototype Test Boards:

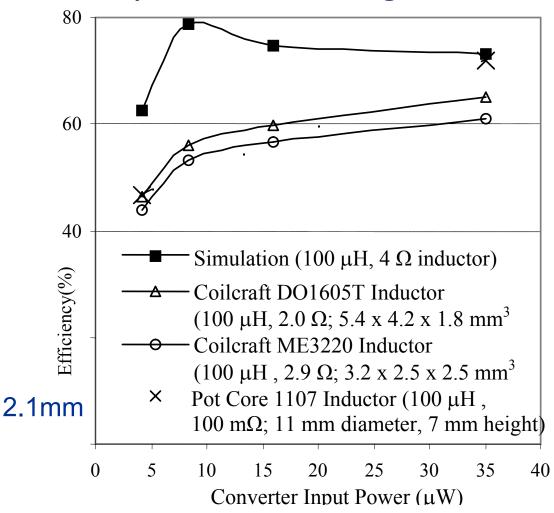
Loads

The processor successfully delivered sufficient power for wireless H₂ sensor.

Power processor

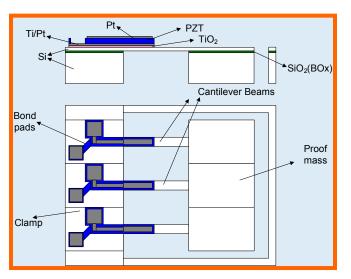




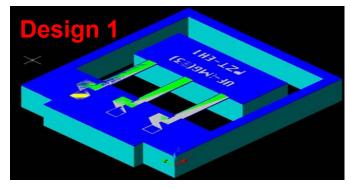


Florida Solar Energy Center • November 1-4, 2005

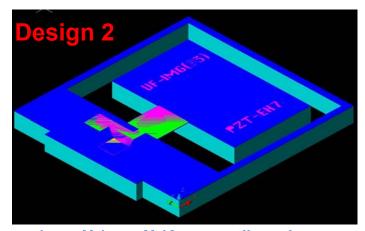
Power Processor IC (Vibration): IC & test configuration



Florida Solar Energy Center • November 1-4, 2005


MEMS Piezocantilevers

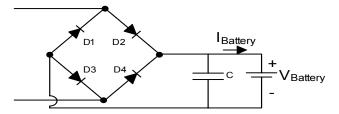
- Predicted output
 - varies with g's and freq
 - 110 $\mu W/cc$ (50 $\mu W/gm)$ for 1g, 100 Hz
- Fabrication 70% complete



Bottom proof mass

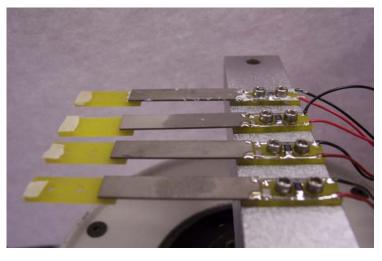
1 mm X 200 μm X 12 μm cantilever beams 1 mm X 800 μm X 500 μm proof mass

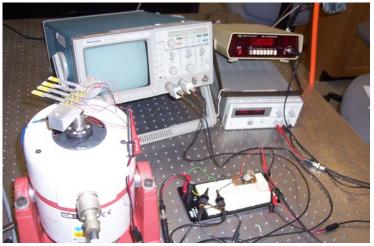
1 mm X 1 mm X 12 µm cantilever beams 2.5 mm X 4 mm X 500 µm proof mass



Florida Solar Energy Center • November 1-4, 2005

Mesoscale Piezocantilevers

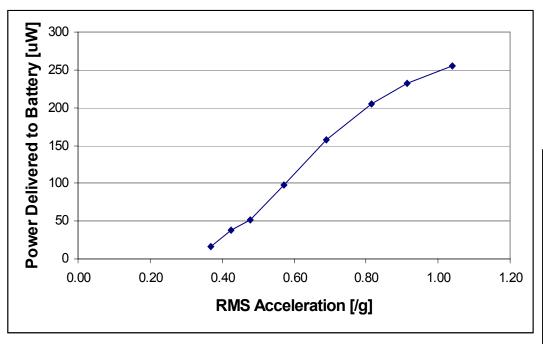

Length of shim	1.25 in
Width of shim	0.25 in
Thickness of shim	4 mil
Length of PZT	1.25 in
Width of PZT	0.25 in
Thickness of PZT	7.5 mil

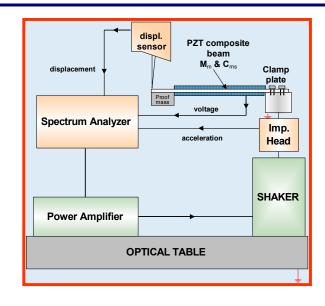


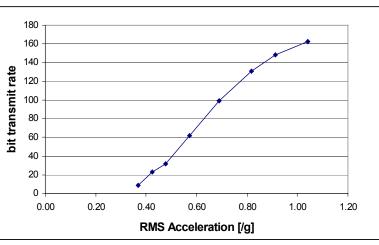
Direct Charging Circuit

PSI PZT-5A Bimorphs

Shaker

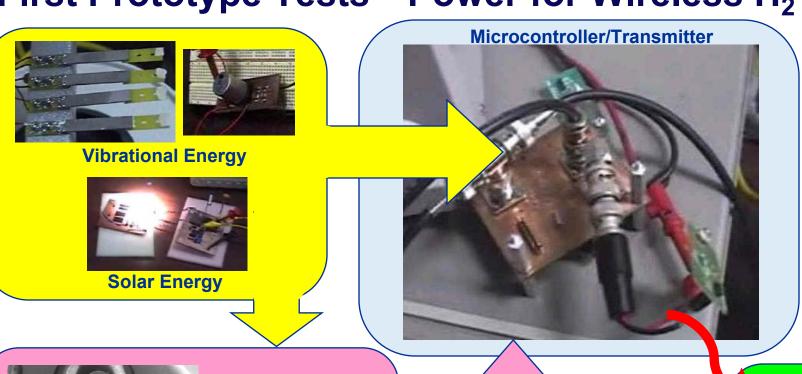


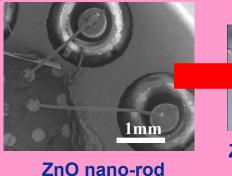



Florida Solar Energy Center • November 1-4, 2005

Mesoscale Piezocantilevers

- Vibrational energy harvested per mesoscale bimorph piezocantilever
- Sufficient energy to transmit data





Florida Solar Energy Center • November 1-4, 2005

First Prototype Tests—Power for Wireless H₂ Sensor

ZnO Interface

WIRELESS

Florida Solar Energy Center • November 1-4, 2005

Future Plans

- Continue MEMS piezocantilever device fabrication
- Characterize MEMS piezocantilever
 - Lumped element parameter extraction
 - Comparison with FEM and analytical model
 - Power and voltage measurements
 - Comparison with LEM model
- Demonstrate energy reclamation with power processor
- Develop packaging for multi-power source for wireless hydrogen sensor network

Florida Solar Energy Center • November 1-4, 2005

Acknowledgements

- NASA Hydrogen Research Initiative at Florida Universities
- Graduate students
 - Shengwen Xu
 - Anurag Kasyap
 - David Johnson
 - Jerry Jun
 - Alex Phipps
- Faculty collaborators
 - Dr. Jenshan Lin
 - Dr. Fan Ren
 - Dr. David Norton
 - Dr. Steve Pearton
 - Dr. Lou Cattafesta
 - Dr. Mark Sheplak